Balanced growth path with AK model

Finding a balanced growth path always annoyed me. It felt like we were imposing a condition on the model which may not necessarily be true. However, I feel like this comes down the the fact that what is a very simple idea was very poorly explained.


What is a balanced growth path?

We are finding out whether a variable in the economy grows at a constant rate.

For example, if we divide this years output Y(t) by last years output Y(t-1) does it equal a constant value? I.E is GDP growth constant over time.

That's all we are doing.

The AK model

Suppose we have the following simple discrete model. I will show in this example that

C(t+1)/C(t) = g where g is a constant value. Thus, consumption follows a balanced growth path.

Y(t) = AK(t)                                                                                         (1)

with the capital evolution path as follows:

K(t+1) = (1-d)K(t) -  I(t)                                                                  (2)

and the resource constraint

Y(t) = C(t) + I(t)                                                                                  (3)

and the Utility function

U = ln[ C(t) ]                                                                                       (4)

We could know set up a lagrangean:

L = ln C(t) + h(t)[K(t+1) - (1-d)K(t) -  AK(t) - C(t)                   (5)

Now derive it wrt to C(t):

dl/dC(t) = 1/C(t) - h(t) = 0                                                            (6)

This implies:

1/C(t) = h(t)                                                                                      (7)

Derive with respect to K(t+1)

dl/dK(t+1) = h(t) - h(t+1)[(1-d) + A] = 0                                 (8)

Which implies

[(1-d) + A] = h(t)/h(t+1)                                                              (9)

Which implies

[(1-d) + A] = 1/c(t) / 1/c(t+1)                                                    (10)

and thus

[(1-d) + A] = c(t+1)/c(t)                                                             (11)

Since d which is depreciation, A the rate of technological change are all assumed to be constant in this model the rate of consumption growth is constant and thus:

g = 1 - d + A

You should be able to solve for the remaining variables Y, I, K.



Have an economics question you wish to ask? Try our new forum. It's free to use and requires no registration!

Leave a Reply

Your email address will not be published. Required fields are marked *